Системы линейных уравнений
in Лекции по алгебре
as алгебра, лекции, обучение, уравнения, формулы
В средней школе рассматривались линейные уравнения ax=b и системы линейных уравнений

где — действительные числа.
В излагаемой теории систем линейных уравнений мы будем совершать с коэффициентами операции сложения и умножения, а также делить (т. е. умножать на обратный элемент) на ненулевой элемент. Таким образом, естественно рассматривать системы линейных уравнений с коэффициентами из произвольного поля K. Для понимания основных моментов теории систем линейных уравнений можно считать, что K — поле R действительных чисел.
Наша ближайшая цель — исследовать системы m линейных уравнений общего вида от n переменных x1, x2, x3,…,xn
![]() |
(3.1) |
где ,
.
Таким образом, i-е уравнение, , нашей системы записывается в виде ai1x1+ai2x2+ … +ainxn=bi (aij — коэффициент при переменной xj в i-м уравнении, bi — свободный член i-го уравнения), или, кратко,

Прямоугольная — таблица коэффициентов
(m строк, n столбцов)

называется матрицей коэффициентов системы линейных уравнений (3.1), а прямоугольная -матрица (m строк, n+1 столбец)

называется расширенной матрицей системы линейных уравнений (3.1) (уже полностью ее определяющей).
Если m=n (число уравнений равно числу переменных), то система линейных уравнений (и матрица ее коэффициентов при переменных) называется квадратной.
В квадратной матрице

можно определить диагональ и побочную диагональ:

Если в системе линейных уравнений b1=…=bm=0, то система называется однородной.
Совокупность решений системы линейных уравнений
Определение 3.1.1. Решением системы линейных уравнений (3.1) называется строчка n элементов поля K (l1,…,ln), , такая, что при подстановке в i-е уравнение,
, l1 вместо x1, l2 вместо x2,…,li вместо xi,…,ln вместо xn получаем bi (свободный член i-го уравнения), т. е.

Таким образом, строчка (l1, …, ln) является решением, если значения l1, …, ln соответственно для x1, …, xn удовлетворяют всем m уравнениям системы (3.1).
Через X обозначим совокупность всех решений системы линейных уравнений (3.1).
Замечание 3.1.2.
(т. е. совокупность всех решений является подмножеством в множестве Kn всех строк длины n элементов из поля K).
- Возможно, что
(т. е. система линейных уравнений не имеет решений), в этом случае система называется несовместной.
- Если
(т. е. система имеет решение), то система (3.1) называется совместной. Например, однородная система линейных уравнений всегда имеет нулевое решение,
.
Если система имеет только одно решение (|X|=1), то система называется определенной. Если |X| > 1, то совместная система называется неопределенной. Итак, для числа решений имеются следующие возможности:
Число решений | ||
0 | 1 | >1 |
Система несовместная, ![]() |
Система определенная, |X|=1 | Система неопределенная, |X|>1 |
Примеры | ||
![]() несовместная с. л. у. |
![]() определенная с. л. у. |
![]()
неопределенная с. л. у. |
Основная задача исследования систем линейных уравнений (3.1) заключается в описании (нахождении) множества решений (в частности, определения, к какому типу принадлежит система (3.1): несовместная, определенная, неопределенная).