First page of the алгебра archive.

Тьюринга и алгоритмически неразрешимые проблемы

Posted by admin on 16 Август 2010 with No Comments
in Лекции по алгебре
as , , , ,

Алан Тьюринг высказал предположение (известное как Тезис Чёрча — Тьюринга), что любой алгоритм в интуитивном смысле этого слова может быть представлен эквивалентной машиной Тьюринга. Уточнение представления о вычислимости на основе понятия машины Тьюринга (и других эквивалентных ей понятий) открыло возможности для строгого доказательства алгоритмической неразрешимости различных массовых проблем (то есть проблем о нахождении единого метода решения некоторого класса задач, условия которых могут варьироваться в известных пределах). Простейшим примером алгоритмически неразрешимой массовой проблемы является так называемая проблема применимости алгоритма (называемая также проблемой остановки). Она состоит в следующем: требуется найти общий метод, который позволял бы для произвольной машины Тьюринга (заданной посредством своей программы) и произвольного начального состояния ленты этой машины определить, завершится ли работа машины за конечное число шагов, или же будет продолжаться неограниченно долго.

В течение первого десятилетия истории теории алгоритмов неразрешимые массовые проблемы были обнаружены лишь внутри самой этой теории (сюда относится описанная выше проблема применимости), а также внутри математической логики (проблема выводимости в классическом исчислении предикатов). Поэтому считалось, что теория алгоритмов представляет собой обочину математики, не имеющую значения для таких её классических разделов, как алгебра или анализ. Положение изменилось после того, как А. А. Марков и Э. Л. Пост в 1947 году установили алгоритмическую неразрешимость известной в алгебре проблемы равенства для конечнопорождённых и конечноопределённых полугрупп (т. н. проблемы Туэ). Впоследствии была установлена алгоритмическая неразрешимость и многих других «чисто математических» массовых проблем. Одним из наиболее известных результатов в этой области является доказанная Ю. В. Матиясевичем алгоритмическая неразрешимость десятой проблемы Гильберта.

Теория множеств Кантора

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

Во второй половине XIX века немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879—1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen»).[1] Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» — который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано. При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre)[источник не указан 188 дней].

Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер, полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее — дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре. Тем не менее, другие крупные математики — в частности, Готлоб Фреге, Рихард Дедекинд и Давид Гильберт — поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла, топологии и функционального анализа.

Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение!).

Однако, в работах русского математика Мириманова предлагалось не ограничиваться одними только несамопринадлежащими множествами, как делал это Кантор, но допустить операции и с самопринадлежащими множествами, логика этих операций отлична от интуитивно обычных представлений и позволяет разрешить парадоксы принадлежности (парадокс Рассела) и парадокс фундированных классов (известный также как парадокс Мириманова).

Аксиоматическая теория множеств

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

В начале XX века Бертран Рассел, изучая канторовскую теорию множеств, пришел к парадоксу (с тех пор известному как парадокс Рассела). Таким образом, была продемонстрирована несостоятельность этой теории множеств и связанной с ней канторовской программы стандартизации математики. После обнаружения антиномии Рассела часть математиков (например, Л. Э. Я. Брауэр и его школа) решила полностью отказаться от использования […]

Исторический очерк

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

Идея записывать общие свойства чисел и вычислительные алгоритмы на особом символическом метаязыке появилась давно, однако первоначально буквенные символы в уравнениях обозначали только неизвестные, значения которых следует найти, а для прочих членов уравнения записывали конкретные числовые значения. Мысль о том, что известные величины (коэффициенты) тоже полезно для общности обозначать символами, пробивала себе путь медленно. Впервые, насколько […]

Теория графов

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

Теория графов — раздел дискретной математики, изучающий свойства графов. В общем смысле граф представляется как множество вершин (узлов), соединённых рёбрами. В строгом определении графом называется такая пара множеств G=(V,E), где V есть подмножество любого счётного множества, а E — подмножество V?V. Теория графов находит применение, например, в геоинформационных системах (ГИС). Существующие или вновь проектируемые дома, […]

Возникновение теории алгоритмов

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

Развитие теории алгоритмов начинается с доказательства К. Гёделем теорем о неполноте формальных систем, включающих арифметику, первая из которых была доказана в 1931 г. Возникшее в связи с этими теоремами предположение о невозможности алгоритмического разрешения многих математических проблем (в частности, проблемы выводимости в исчислении предикатов) вызвало необходимость стандартизации понятия алгоритма. Первые стандартизованные варианты этого понятия были […]

Современное состояние теории алгоритмов

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

В настоящее время теория алгоритмов развивается, главным образом, по трем направлениям. Классическая теория алгоритмов изучает проблемы формулировки задач в терминах формальных языков, вводит понятие задачи разрешения, проводит классификацию задач по классам сложности (P, NP и др.). Теория асимптотического анализа алгоритмов рассматривает методы получения асимптотических оценок ресурсоемкости или времени выполнения алгоритмов, в частности, для рекурсивных алгоритмов. […]

Классы сложности

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

В рамках классической теории осуществляется классификация задач по классам сложности (P-сложные, NP-сложные, экспоненциально сложные и др.). К классу P относятся задачи, которые могут быть решены за время, полиномиально зависящее от объёма исходных данных, с помощью детерминированной вычислительной машины (например, машины Тьюринга), а к классу NP — задачи, которые могут быть решены за полиномиально выраженное время […]

Аксиоматика теории множеств

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

Cовременная теория множеств строится на системе аксиом — утверждений, принимаемых без доказательства, из которых выводятся все теоремы и утверждения теории множеств. Система аксиом Цермело—Френкеля (ZF) является стандартной системой аксиом для теории множеств. Эта и подобные ей системы аксиом любопытны потому, что любая математическая теория может быть «переведена» на язык теории множеств таким образом, что теоремы […]

Парадоксы теории множеств

Posted by admin on 23 Июль 2010 with No Comments
in Лекции по алгебре
as , , , ,

Парадоксами теории множеств называют рассуждения, демонстрирующие противоречивость наивной теории множеств, такие как парадокс Бурали-Форти (1897) парадокс Кантора (1899) парадокс Рассела (1905) рассуждения, результат которых интуитивно кажется ложным или «парадоксальным», но которые, тем не менее, являются следствием аксиом формальной теории множеств, включая: предложенный Б. Расселом «парадокс Тристрама Шенди», демонстрирующий нарушение принципа «часть меньше целого» для бесконечных […]