Теория множеств Кантора
in Лекции по алгебре
as алгебра, лекции, обучение, уравнения, формулы
Во второй половине XIX века немецкий математик Георг Кантор разработал свою программу стандартизации математики, в рамках которой любой математический объект должен был оказываться тем или иным «множеством». Этот подход изложен в двух его статьях, опубликованных в 1879—1897 годах в известном немецком журнале «Математические анналы» (нем. «Mathematische Annalen»).[1] Например, натуральное число, по Кантору, следовало рассматривать как множество, состоящее из единственного элемента другого множества, называемого «натуральным рядом» — который, в свою очередь, сам представляет собой множество, удовлетворяющее так называемым аксиомам Пеано. При этом общему понятию «множества», рассматривавшемуся им в качестве центрального для математики, Кантор давал мало что определяющие определения вроде «множество есть многое, мыслимое как единое», и т. д. Это вполне соответствовало умонастроению самого Кантора, подчёркнуто называвшего свою программу не «теорией множеств» (этот термин появился много позднее), а учением о множествах (Mengenlehre)[источник не указан 188 дней].
Программа Кантора вызвала резкие протесты со стороны многих современных ему крупных математиков. Особенно выделялся своим непримиримым к ней отношением Леопольд Кронекер, полагавший, что математическими объектами могут считаться лишь натуральные числа и то, что к ним непосредственно сводится (известна его фраза о том, что «бог создал натуральные числа, а всё прочее — дело рук человеческих»). Полностью отвергли теорию множеств и такие авторитетные математики, как Герман Шварц и Анри Пуанкаре. Тем не менее, другие крупные математики — в частности, Готлоб Фреге, Рихард Дедекинд и Давид Гильберт — поддержали Кантора в его намерении перевести всю математику на теоретико-множественный язык. В частности, теория множеств стала фундаментом теории меры и интеграла, топологии и функционального анализа.
Однако вскоре выяснилось, что установка Кантора на неограниченный произвол при оперировании с бесконечными множествами (выраженный им самим в принципе «сущность математики состоит в её свободе») является изначально порочной. А именно, был обнаружен ряд теоретико-множественных антиномий: оказалось, что при использовании теоретико-множественных представлений некоторые утверждения могут быть доказаны вместе со своими отрицаниями (а тогда, согласно правилам классической логики высказываний, может быть «доказано» абсолютно любое утверждение!).
Однако, в работах русского математика Мириманова предлагалось не ограничиваться одними только несамопринадлежащими множествами, как делал это Кантор, но допустить операции и с самопринадлежащими множествами, логика этих операций отлична от интуитивно обычных представлений и позволяет разрешить парадоксы принадлежности (парадокс Рассела) и парадокс фундированных классов (известный также как парадокс Мириманова).