Математика Древнего Египта
in История математики. Люди в ней
as задачки, история, личности, малыши, математика, математика для маленьких, математики, сложение, стихи, счет, ученые, учимся считать
Наши познания о древнеегипетской математике основаны главным обраом на двух больших папирусах математического характера и на нескольких небольших отрывках. Один из больших папирусов называется математическим папирусом Ринда (по имени обнаружившего его учёного) и находится в Лондоне. Он примерно 5,5 м длины и 0,32 ширины. другой большой папирус , почти такой же длины и 8 см ширины, находится в Москве. Содержащиеся в них математические сведения относятся примерно к 2000 г. до н.э.
Папирус Ринда представляет собой собрание 84 задач прикладного характера. При решении этих задач производятся действия с дробями, вычисляются площади прямоугольника, треугольника, трапеции и круга, объёмы параллелепипеда, цилиндра, размеры пирамид. имеются также задачи на пропорциональное деление , а при решении одной задачи находится сумма геометрической прогрессии.
В московском папирусе собраны решения 25 задач. Большинство их такого же типа, как и в папирусе Ринда. Кроме того, в одной из задач правильно вычислятся объём усечённой пирамиды с квадратным основанием . В другой задаче содержится самый ранний в матаматике пример определения площади кривой поверхности: вычисляется боковая поверхность корзины, т.е. полуцилиндра, высота которого равна диаметру основания.
При изучении содержания математических папирусов обнаруживается следующий уровень математических знаний древних египтян.
Ко времени написания этих документов уже сложилась определённая система счисления: десятичная иероглифическая. алгоритмические числа записывались комбинациями узловых чисел. С помощью этой системы египтяне справлялись со всеми вычисленями, в которых употребляются целые числа. Что касается дробей, то египтяне создали специальный аппарат, опиравшийся на понимание дроби только как доли единицы.
Сложились также определённые приёмы производства математических опеаций с целыми числами и дробями. Общей для всей вычислительной техники египтян является её аддитивный характер, при котором все прцедуры по возможности сводятся к сложению.
При умножении, например, преимущественно используется способ постепенного удвоения одного из сомножителей и складывания подходящих частных произведений.
При делении также используется процедура удвоения и последовательного деления пополам. Деление, по-видимому, было самой трудной математической операцией для египтян. Здесь наблюдается самое большое разнообразие приёмов. Так, иногда в качестве промежуточного действия применялось нахождение двух третей или одной десятой доли числа и т.п.
При сложении дробей, имеющих разные знаменатели, египтяне использовали умножение их на вспомогательные числа. Способы подбора этих вспомогательных чисел не дают, однако, права судить об этом приёме как о единообразном процессе, адекватном способу приведения дробей к общему знаменателю. Исторические рекострукции во многом ещё спорны и не подтвердены достаточным количеством фактов.
Материалы, содержащиеся в папирусах, позволяют утверждать , что за 20 веков до нашей эры в Египте начали складываться элементы математики как науки. Эти элементы ещё только начинают выделяться из практических задач, целиком подчинены их содержанию. Техника вычислений ещё примитивна, методы решения задач не единообразны. Однако материалов, которые позволяли бы судить о развитии математики в Египте, ещё недостаточно.